Structural and Multidisciplinary Optimization
https://doi.org/10.1007/s00158-020-02552-0

EDUCATIONAL PAPER

A MATLAB code for topology optimization using the geometry

projection method

Hollis Smith" - Julian A. Norato'

®

Check for
updates

Received: 19 December 2019 /Revised: 29 January 2020 / Accepted: 14 February 2020

© The Author(s) 2020

Abstract

This work introduces a MATLAB code to perform the topology optimization of structures made of bars using the geometry
projection method. The primary objective of this code is to make available to the structural optimization community a simple
implementation of the geometry projection method that illustrates the formulation and makes it possible to easily and efficiently
reproduce results. A guiding principle in writing the code is modularity, so that researchers can easily modify the program for
their own purposes. Another goal is efficiency, for which extensive use of vectorization is made. This paper details the formu-
lation of the geometry projection, discusses implementation aspects of the code, and demonstrates some of its capabilities by
presenting several 2D and 3D compliance minimization examples.

Keywords Topology optimization - Geometry projection

1 Introduction

The prevalent techniques to perform topology optimization of
continua are the density-based and the level-set methods
(Sigmund and Maute 2013). These techniques produce organ-
ic designs that are highly efficient. In some cases, a design that
closely follows the optimal topology can be manufactured
using, for example, additive manufacturing or casting tech-
niques. However, when the most economical fabrication pro-
cess consists of joining stock material such as bars or plates, it
can be very difficult to translate the optimal topology into a
design that conforms to that process. This difficulty has moti-
vated the development of topology optimization techniques
that produce designs exclusively made of geometric
primitives.

One of the topology optimization techniques that render
designs made of geometric components is the geometry

This work was supported by the U.S. Office of Naval Research, Grant
Number N00014-17-1-2505.

Responsible Editor: Xu Guo

P4 Julidan A. Norato
julian.norato @uconn.edu

The University of Connecticut, 191 Auditorium Road, U-3139,
Storrs, CT 06269, USA

Published online: 23 March 2020

projection method (GPM) (Bell et al. 2012; Norato et al.
2004, 2015). There exist other techniques to perform topology
optimization using geometric components, such as the mov-
ing morphable components method (Guo et al. 2014; Zhang
et al. 2016b); a review of these techniques is outside of the
scope of this paper; and we refer the reader to the recent
review by Wein et al. (2019). The purpose of this work is to
introduce a MATLAB code to illustrate the GPM for the to-
pology optimization of 2D and 3D structures made of bars.
The GPM is described in detail in Section 2. In particular, we
aim to demonstrate how the geometry mapping can be per-
formed in an efficient manner using vectorized operations.
Unlike other educational codes published in this journal, we
do not attempt to fit the code into a relatively low number of
lines and include it in the manuscript. Although this would be
in principle possible, we believe in our case it would sacrifice
clarity and therefore hinder the objective of explaining the
inner workings of the geometry projection. Instead, this man-
uscript provides an overview of the program, and the code is
released for free and made available through GitHub at https://
github.com/jnorato/GPTO. This approach allows us to better
modularize the code but also to add various functionalities and
options that users can experiment with, which we believe will
be beneficial to the research community. The code is released
under a Creative Commons CC-BY-NC 4.0 license, which
means it is free for non-commercial use and that appropriate
credit must be given. The program is not an open source

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-020-02552-0&domain=pdf
http://orcid.org/0000-0002-2677-3090
https://github.com/jnorato/GPTO
https://github.com/jnorato/GPTO
mailto:julian.norato@uconn.edu

H. Smith, J. A. Norato

program in the sense that a repository to which users can
contribute to further development of the code is not available.
Nevertheless, the authors welcome any suggestions that users
may have for future improvements.

The rest of the manuscript is structured as follows.
Section 2 presents formulation of the geometry projection
method. In Section 3, details of the implementation are pro-
vided. Some usage examples are presented in Section 4, and
we draw conclusions of this work in Section 5.

2 Geometry projection formulation

The basic idea of the geometry projection is to take a high-
level parametric description of a geometric component wy, and
map it onto a pseudo-density field over a design region €2 2
wy. This field is subsequently discretized via a fixed mesh for
analysis. The mapping must be differentiable so that design
sensitivities of the optimization functions are well defined,
and thus efficient gradient-based optimizers can be employed.
This section describes the formulation of the geometry projec-
tion and of the sensitivities.

2.1 Projected, penalized, and combined densities

We first consider the projection of a single geometric compo-
nent. The projected density at a point x is the volume fraction
of the intersection between the ball B’ of radius » centered at x
and the component wy, (Norato et al. 2004), i.e.,

p(x, 2y,)= 120 2] (1)

B

where z, is the vector of geometric parameters that describe
wy. For arbitrary shapes of the component wy,, computing ex-
actly this intersection is not straightforward. Therefore, we
seek an approximation of (1) that is easy to compute and is
differentiable. If we assume wy, to be a smooth closed manifold
and r to be sufficiently small, then dw,NB’, can be approxi-
mated as a line segment in 2D and a circle in 3D (since B is a
circle and a sphere, respectively). With that assumption, the
projected density can be approximated as the area fraction of
the circular segment of height 2 = » — ¢, in 2D (or volume
fraction of the spherical cap of the same height in 3D), where
Op(x, 7) 1s the signed distance from x to dwy, (see Fig. 1).! The
projected density is thus given by

0, if ¢,/r < 1
N (M) =4 H(dy/r), if-1<¢y/r<1 2)
1, if ¢ /r > 1,

! Unlike previous works, here the signed distance is positive inside wy, and
negative outside, to be consistent with most of the literature.

@ Springer

0 ;

Fig. 1 Geometry projection

where
)
N 17arccosx+x\/1 X 2D
H(x) = ™ 3
(x) 1+3x X3 13D 3)
-t in 3D.
2 4 47

The notation H is used here to bring attention to the fact
that this is a regularized Heaviside; however, we emphasize
that it corresponds to the area (volume) fraction calculation of
the circular (spherical) cap. The size » of the sample window is
fixed throughout the optimization; hence, it is hereafter omit-
ted as an argument. We also omit arguments on the right-hand
side of equations for brevity. The calculation of ¢, depends on
the particular representation of the geometric components. In
the case of the offset bars considered in this work, it will be
detailed in Section 2.2.

A key ingredient of the geometry projection method is that,
in addition to the parameters that describe the shape of each
component, a size variable oy, € [0, 1] is ascribed to each
component b. This size variable is penalized in the same spirit
of penalization schemes employed in density-based topology
optimization, so that a value of «;, = 1 indicates the geometric
component must be part of the structure, while a value oy, =0
indicates the component must be removed from the design.
This feature makes it easier for the optimizer to remove geo-
metric components and modify the topology. The penalization
is achieved via the definition of a penalized density p, that
incorporates the size variable o, as

Py (%, 20, @)= (b Py q) (4)

A MATLAB code for topology optimization using the geometry projection method

where p is a penalization function, ¢ is the penalization pa-
rameter, and we note that oy, € z;,. For example, for a power
law penalization, as in the solid isotropic material penalization
(SIMP) commonly used in density-based topology optimiza-
tion, we have that u(appp, ¢) = (appp)?. Importantly, for the
penalization to be effective, it is required that the volume of
the structure be computed with the unpenalized density (e.g., g
=1 for SIMP).

Here we note that, unlike our previous works, the projected
density p, is also penalized, as otherwise the material interpo-
lation is linear in p, when oy, = 1, which renders a physically
unrealistic material wherever intermediate-density material
appears (i.e., along the boundaries of geometric components),
as demonstrated in Bendsee and Sigmund (1999). We also
observe slightly better convergence with this modification,
and this strategy produces less gaps in between components
in the final design that are likely due to unrealistically stiff
gray regions.

When multiple bars overlap, we combine the penalized
densities for all bars into a combined density given by
if p,=0,forb=1,",n

Prmin>

p(x,Z,p)= (5)

max __, otherwise,

o,
where 7, is the number of geometric components, max de-

notes a smooth approximation of the maximum function, Z:=

T
{ZIT, "',znTh } is the vector of design variables for all compo-

nents, and 0 < p,,i, < 1 is a positive lower bound to prevent an
ill-posed analysis. An example of a function that embodies (5)
is the modified p-norm described in Zhang et al. (2016a):1

1
np plr

p(x,Z,p)= [ffnin + (1Pin) b;ﬁb : (6)

This modified p norm renders p = piin, if p, = 0Vb and p =
1 if p, = 1Vb, regardless of the number of geometric compo-
nents. Finally, the combined density is reflected in the analysis
by using an ersatz material, with the elasticity tensor modified
as

C(x,Z)=pCy (7)

where C is the elasticity tensor for the material the geometric
components are made of.

The foregoing formulation can be used for geometric com-
ponents of any shape that are made of a single, isotropic ma-
terial, so long as a signed distance and its derivatives with
respect to the geometric parameters can be computed. For
instance, this scheme has been employed to design structures
made of bars (Norato et al. 2015), flat plates (Zhang et al.

2016a), curved plates bent along a circular arc (Zhang et al.
2018), and supershapes (Norato 2018), which are a generali-
zation of hyperellipses with variable symmetry. The case of
multi-material structures, where components can be made of
one out of a given set of isotropic materials, and where the
optimizer simultaneously determines the optimal components
layout and the best material for each component, requires a
different strategy to combine the geometric primitives and to
interpolate the properties of the different materials (cf. Watts
and Tortorelli (2017) and Kazemi et al. (2018)).

2.2 Distance

We now describe the computation of the signed distance ¢,, in
1. Here, as in some of our previous works, we represent bars
as offset surfaces (Norato et al. 2015). Specifically, the bound-
ary of the bar is given by the set of all points at a distance r,, of
the line segment with endpoints x1y, and xy, (cf. Figure 1). This
definition represents bars as rectangles with semicircular caps
in 2D and cylinders with semispherical caps in 3D. The user
must define an initial design made of a set of bars; bars can be
removed from the design during the optimization (e.g., by
setting its size variable to zero) or reintroduced (by increasing
a zero size variable), but in this code, bars cannot be intro-
duced during the optimization.

The vector of design parameters for bar b in the offset
surface representation is therefore given by z, = {x1u, X2ps 7,
ap}. Our formulation allows for the case where endpoints are
shared by two or more bars, thus they remain “connected” at
these endpoints throughout the optimization (much like
ground structure approaches). The total number of design var-
iables is 2(ngny, + ny), where ng = 2, 3 in 2D and 3D, respec-
tively, and #, is the total number of endpoints. Alternatively, a
bar can be defined to have its own medial axis endpoints, thus
it can “float” within the design region independently of other
bars. If all bars are “floating,” then 7, = 2n,,.

The advantage of using the offset surface representation is
that the signed distance to the boundary of the bar can simply
be computed as the distance to the medial axis (d},) minus the
bar radius as

¢b(x, Zb) = db(x, Zb)*l’b- (8)

To compute the distance to the bar’s boundary, it is there-
fore only necessary to compute the distance to the bar’s medial
axis. Moreover, as we show in the sequel, the distance d}, and
its design sensitivities can be computed in closed form as a
function of the bar’s design parameters zy,.

Though not strictly necessary, an element-uniform combined
density (5) is employed for the computation of the ersatz material
of (7). Therefore, the combined density and consequently the
signed distance are computed at the element centroid, which
we denote as x,, (cf. Figure 2). We also use the notation

@ Springer

H. Smith, J. A. Norato

Fig. 2 Definition of vectors and quantities for distance computation

Xo/3=Xa"Xp- 9)

The length of bar b is given by
by = llxap/10 1l (10)

and the unit vector along the bar’s medial axis is given by

ay = 221 (11)

by

Consider a Cartesian coordinate system for each bar in
which x;, is the origin and ay, is the first axis. On this coordi-
nate system, {, and ry, are, respectively, the parallel and per-
pendicular components of x./, given by

loe = ay * Xe/1b (12)
Toe = [I7vell = [[Xe/15~Coean |- (13)

The distance from the medial segment of bar b to the cen-
troid of element e is given by

”xe/lb”a if Cpe<0
dpe = xepanll, if €pe < €y (14)
Tbe, otherwise

2.3 Optimization problem

The optimization problem solved by default in our code is the
compliance minimization problem given by

min

7 c(u(2))=lru(Z) - tdl (15)
subject to
1 *
Vf:=ﬁ_[gde§Vf (16)
a(u(Z),v) =1(v),Yveldy (17)
Xip, xp€Qforb =1, m (18)

@ Springer

Py ST S by (19)

0.0<a,<1.0, (20)

where ¢ is the compliance, vris the volume fraction and v}k- its
limit, and p is the combined density of (5). The domain 2
denotes the region occupied by the design envelope, and I;
and I, denote the portions of 62 where traction ¢ and displace-
ment boundary conditions u are imposed, respectively, with 7;u
I,=00, I,N I, = J as usual. We assume there are no body
loads and the applied traction is design-independent. The admis-
sible sets for the trial displacement functions « and the test func-
tions v are given by L{zz{u}ueHl(Q), ul, = u} and
u0=={V‘V€H L),y r = 0¢, respectively. The “energy bilin-

u

ear form a and the load linear form | in (17) are computed as

a(u, V)::,[QVSV' CVsudQ (21)

with C the ersatz elasticity tensor of (7), Vg the symmetric gra-
dient operator and

|(v)=[r, Vv - ¢dT. (22)

2.4 Sensitivities

In this section, we present the expressions required to compute
analytical sensitivities of the compliance and volume fraction.
For an optimization function # that depends on the design
exclusively and implicitly through the displacements, its sen-
sitivity with respect to a design variable z; is given by

% _ 5 % 0p.
0z Zi0p, 0z

(23)

where 7, is the number of elements. Using adjoint analysis,
and as customary in density-based topology optimization, for
the compliance (i.e., § = ¢) we have

0 1

C Ko = —uCTKSue, (24)
e Pe

where u° is the vector of nodal displacements for element e, K°
is the element stiffness matrix computed using the ersatz ma-
terial of (7), and K7 is the “fully solid” element stiffhes matrix
corresponding to p, = 1. It should be noted that K only needs
to be computed once and for all in the optimization and stored
in memory.

The sensitivity of the combined density, 0p./0z; in (23), is
obtained from (5) as

bzla/p\be

= (25)

%: 1 op, a/Ibbe_ g 0 (Iﬁ\ag([,ﬁ)6/,5176
0zi p=1gp,, Oz be) oz’

where p,, is the penalized density for element e and bar b of
(4). It should be noted that dp,,/dz; is zero when z; does not

A MATLAB code for topology optimization using the geometry projection method

correspond to one of the design variables of bar ». The differ-
ence between “floating” and “connected” bars is that in the
former case dp,, /0z; is non-zero for (at most) one bar and only
the summand for the corresponding bar needs to be computed.
The actual expression for the derivative of the smooth maxi-
mum depends of course on the particular function chosen.

The sensitivities of the penalized density p,, are obtained
from (4) as

Ppe _ Opt OPpe oy
b 6zi +pb8 8zi)

26
0z; O(apppe) ()

If z; corresponds to one of the components of x;; or x,,
then Oay;/0z; = 0 and the second term on the right-hand side of
(26) vanishes. Conversely, if z; = «,, then 0p,,/0z; = 0 and O/
0z; = 1, thus the first term on the right-hand side of (26)
vanishes. Finally, if z; does not correspond to one of the design
parameters of bar b, then the entire expression is zero.
Consequently, each of the terms in the right-hand side of
(26) is computed separately for each bar, and the sensitivities
are subsequently “assembled” into a matrix.

From (2), the sensitivity of the projected density pp, is
given by

e 1 OH Oy,

if—1<¢,/r<l
R e R (7)
0 otherwise.

This expression highlights the fact that the sensitivities of
the projected density are non-zero only in a band of width 2r
along the bar boundary. From (3), we find

OH _ {2vV1=2/x in2D (28)
ox 3(1=x*)/4 in3D,

with x = ¢,./r. The sensitivities of the signed distance of (8)
are given by

Odpe .
0 e if z=(x15), or (x2p), k=1, ng
be — aZ,-) (29)
0z; -1 if z=rp
0 otherwise,

Finally, the sensitivities of the distance dj, with respect to
the bar endpoints x,;, s € {1, 2} are given by

S if £,,<0
odn 1| if £y, < (
abZT Xe/2602 , B oe =t 30
Xsb be | =, (551 + %(53—5’1)) otherwise,

b

where 0;:={1 if s = k, 0 otherwise} is the Kronecker delta.
It can be noted from (30) that 0d;,/Ox,;, is undefined when
dp.= 0 (Norato et al. 2015; Zhang et al. 2016a). In this case, an

element centroid x, lies exactly on the medial axis of bar b.
This situation can be circumvented by making sure the sample
window size is smaller than the bar’s width, i.e., < r,, since
an infinitesimal perturbation of the bar’s medial axis endpoints
will leave the projected density of any point on the medial axis
unchanged (pp. = 1), and thus Opp,/0x, in (27) must necessar-
ily be zero.

‘When the bar’s axis collapses to a point (so that £, = 0), the
sensitivities are still well defined, since the first branch of (30)
applies. However, since the code still computes a,/{;,, we
check ¢, against a small tolerance to prevent a division by
Zero.

The sensitivities of the volume fraction of (16) (i.e., 0 = vy
are computed as

ovy 12X op
=— Yy, —%, 31
52,‘ \% e;v aZi ()

where v, is the volume of element e and V =)¢ v, is the
volume of the design region. The term 0p,/0z; is computed as
before using (25-30), however with the clarification that the
volume fraction must be computed with the unpenalized den-
sity. Consequently, 6u/0(appe) = 1 1n (26).

Most of the equation numbers for this section have been
added to comments in the code so that the user can readily find
them (for instance, as shown in Appendix A).

2.5 Algorithm

We complete the presentation of the geometry projection for-
mulation with the pseudo-code shown in Fig. 3. This algo-
rithm presents a conceptual (but logically correct) flow of the
steps taken to perform the optimization. However, as will be
mentioned in the following section, an efficient implementa-
tion of the code does not exactly follow this pseudo-code. In
Fig. 3, Z denotes the vector of design variables after they have
been scaled so that they lie in the range [0, 1]. This scaling and
the imposition of move limits on each design update are
discussed in detail in Section 3.5.

3 Implementation

In this section, we discuss general aspects of the implementa-
tion, particularly in terms of functionality of the code. We also
discuss in some detail the calculation of the geometry projec-
tion described in the previous section. The code was devel-
oped and tested using MATLAB, version R2018b. It was test-
ed in the Red Hat Enterprise Linux 7.4, macOS Mojave, and
Windows 10 operative systems. Because we make extensive
use of vectorization, the code performs better in multi-core
machines. The code is executed by running the script
GPTO.m (without any arguments). To check that the program

@ Springer

H. Smith, J. A. Norato

Algorithm Topology Opt. via Geometry Projection

k<0 > [teration counter
20 3 > Initial design
repeat
forb=1,...,n,do
fore=1,...,n,do

Compute signed distance @, from x, to bar b > (8)
Compute projected density pp, >(2)
Compute penalized density Py, > (4)
end for
end for
fore=1,...,n, do
Compute combined density p, > (5)

Compute element stiffness matrix K¢ using C(z) of (7)
Assemble K¢ into global stiffness matrix K
end for

Solve K(2)u(z) = f for u(z) > (17)
Compute c(u(2)), Vzc(u(z)) > (15), (24)
Compute v (2), Vzvs(2) > (16), (31)
Impose move limits and update 2;,,, and 2, > (32), (33)

2D < opt (2%, ¢, V,e,v5, oy, Ziow, Zupp) > Update design

k<—k+1

until Any of the stopping criteria is satisfied > §3.5

Fig. 3 Algorithm for topology optimization using geometry projection

is running, we suggest the user simply runs this script, which
executes the optimization of a 2D cantilever beam (not de-
scribed in this work).

It should be noted that performance will suffer drastically
on non-Intel CPUs because Intel’s math kernel library (MKL)
disables by default all but the most basic vectorization on non-
Intel CPUs. However, this can be circumvented by setting an
environment variable: MKLL. DEBUG _CPU _TYPE = 5.

3.1 Organization

Since we do not attempt to write the code in as concise a
manner as possible, we are free to modularize it as much as
possible, which we have attempted to do. Similar functions are
placed under the same subfolder—for instance, those related
to the finite element analysis, geometry projection, optimiza-
tion, plotting, etc. This allows the user to more easily navigate
the code, examine and focus on particular portions of the
implementation, and make changes. We have adhered to the
rule that one routine corresponds to one MATLAB script (i.e.,
no script has multiple functions declared in it). The modular
structure also facilitates having multiple options for, e.g., the
penalization function p of (4), the aggregation function of (5),
the mesh input or generation, etc. The root folder only con-
tains the main script GPTO.m and another script to invoke the
input functions (get inputs.m); all other scripts are inside
subfolders.

Another important aspect of our implementation is that we
use three MATLAB structures, named FE, GEOM, and OPT,
to store all information related to the finite element analysis,
geometric components, and method parameters, respectively.

@ Springer

These structures are declared as global variables in any script
where they are needed. Having only a few structures and de-
claring them as global variables avoids having to pass long
lists of arguments to the functions that need the information
stored in them. If a new field is added to one of these struc-
tures, it becomes immediately available to any routine invok-
ing the structure as a global variable. Using global variables is
in general discouraged in modern compiled languages be-
cause they may not be thread-safe; however, since we are only
using MATLAB’s own vectorized operations, we assume that
potential problems such as race conditions are managed by
MATLAB (and we have to date not observed any issue related
to this in our numerical experiments). Also, the use of global
variables makes the code slightly more efficient, since local
copies of the structures (some of which may be relatively
large, such as FE) need not be created in each routine that uses
them.

3.2 Inputs

The user must provide all of the inputs using MATLAB scripts.
This strategy circumvents having to parse text files, allows in
providing inputs in any order, facilitates the incorporation of
comments, and makes it easier for the user to customize the
code. Although not strictly necessary, we have placed all the
input files for the sample problems into the subfolder \texttt (in
fact, we created additional subfolders inside this subfolder for
each one of the examples). To switch from running one exam-
ple to another, the user needs only to update the single line with
the run command in the inputs.m script located in the root
folder to indicate the location of the master input file for the
run. Having a script that calls the master input files makes it
easy to keep different inputs for different runs. Note that the
\input_files subfolder is not added to the search path out of
precaution to avoid potential name conflicts and because it is
not necessary for the code to run.

Since there are quite a few options in the program, the
easiest way to create input files for a new run is to copy and
modify the files for one of the sample problems. The input
files for all problems are well commented to make it easy to
modify them. All of the inputs are used to initialize the afore-
mentioned three data structures that pertain to the finite ele-
ment analysis, the bars that make up the initial design, and all
parameters related to the geometry projection, the optimiza-
tion problem, the optimizer, and the finite difference check of
sensitivities (if requested).

3.3 Finite element analysis

The parameters relating to the finite element mesh are placed
in the FE.mesh_input structure. Three options are available to
create or read a mesh, which are indicated in the type field.
The ‘generate’ option creates a mesh on the fly for rectangular

A MATLAB code for topology optimization using the geometry projection method

and cuboid design regions in 2D and 3D, respectively. The
user must specify the dimensions of the region and the number
of elements along each dimension using the box_dimensions
and elements_per_side vectors, respectively. The second op-
tion, ‘read-home-made’, can be used to read a mesh that has
been previously created (e.g., using the makemesh script pro-
vided in the code) and saved to a MATLAB .mat file, whose
path must be provided in the field mesh_filename. The option
‘read-gmsh’ allows the user to read a mesh created with the
open source software Gmsh (Geuzaine and Remacle 2009).
The user must create a mesh made of quadrilateral or
hexahedral elements in 2D or 3D, respectively (a transfinite
mesh in Gmsh parlance); export it to MATLAB format; and
indicate the path of this file in the gmsh_filename field. This
third option is very convenient for design regions that are not
cuboid-shaped.

The mesh only contains the node locations and the element
connectivity. Displacement boundary conditions and loads
must be specified in a separate MATLAB script that the user
must create and whose path must be specified in the bes_file
field. This separation facilitates using the same mesh for dif-
ferent problems with different boundary conditions. As be-
fore, it is easier to copy the file for one of the sample problems
and modify it. For cuboid-shaped meshes, the
compute predefined node sets function provides a very con-
venient utility to retrieve node sets corresponding to pre-
scribed points, edges, and faces of the domain, which can be
subsequently used to impose displacement boundary condi-
tions or to apply loads. These node sets are stored in the
FE.node set structure. For example, for a 2D rectangular do-
main, the set BR_PT contains the node in the bottom-right
corner of the domain, and the set L _edge contains all nodes
on the left-hand side edge of the domain. Needless to say, the
user must ensure that the problem is sufficiently restrained to
get a well-posed analysis.

The code for the finite element analysis closely follows the
sparse data structures and vectorized operations presented in
Andreassen et al. (2011). It provides the option to use a direct
or an iterative solver through the parameter
FE.analysis.solver.type. In the former case, we simply use
MATLAB’s matrix left division operator “\”, which uses
Cholesky factorization. In the latter case, which may be useful
for larger systems, we use the preconditioned conjugate gra-
dient solver with an incomplete Cholesky preconditioner
(using MATLAB’s pcg and ichol functions, respectively).
For the iterative solver, the user must specify the convergence
tolerance and the maximum number of iterations in the tol and
maxit fields, respectively.

The code also has an option to use a GPU card to solve the
system of linear equations, by setting the parameter
FE.analysis.solver.use_gpu to true, which can be used if the
system has an NVIDIA GPU card. In this case, only the iter-
ative solver can be used, and a Jacobi preconditioner is used

instead of the incomplete Cholesky preconditioner, since
using the latter incurs a high data transfer cost to the GPU
memory and is inefficient. The trade-off is that the iterative
solution requires more iterations with the Jacobi
preconditioner; nevertheless, for large meshes, it is still faster
than using the iterative solver with CPUs.

Table 1 shows the time it takes to perform one optimization
iteration using CPUs and GPUs in a system with an NVIDIA
GTX 1070 Max-Q GPU card and an Intel core i7 8750H (with
6 cores) running on Ubuntu 19.10. The times correspond to
the average iteration time of the first two iterations for the
optimization of the default problem in the program (a 2D
cantilever beam with eight bars). These times thus include
not only the finite element analysis but also the geometry
projection and the design update by the optimizer. Although
the Jacobi preconditioner requires far more PCG iterations to
converge, it still outperforms the use of CPUs for these mesh
sizes (in this system). Also, it should be noted that the time and
number of iterations will vary throughout the optimization,
since different designs will lead to different condition numbers
for the system matrix. As the table shows, it can be very
convenient to use GPUs in this code. For instance, a mesh
with half a million elements requires about one and a half
minutes per iteration, therefore, 100 iterations of the optimi-
zation can be completed in approximately two and a half
hours, which is—presently—very good for performing topol-
ogy optimization in MATLAB on an individual workstation
(recalling, however, that this is a 2D model).

3.4 Initial design

Through the GEOM.initial design.path field in the master in-
put file, the user must specify the path of the script containing
the specification of the bars that make up the initial design.
This script contains two arrays that describe the initial layout
of bars. The point_matrix array has as many rows as points,
with the first column containing an integer identifier for the
point, and the remaining columns containing the spatial coor-
dinates of the point. The bar_matrix array has as many rows as

Table 1 Average

optimization iteration Device Mesh size 1(s) npcG

times for different size

meshes of a 2D problem cpu 320,000 61.6 12k
gpu 320,000 71.9 6k
cpu 500,000 115.2 1.5k
gpu 500,000 90.2 7k
cpu 749,088 198.4 1.8 k
gpu 749,088 1529 8 k
cpu 999,698 301.7 2 k
gpu 999,698 2232 9.5k

npcg 1S an approximate average number of
PCG iterations to convergence

@ Springer

H. Smith, J. A. Norato

bars. Its first column corresponds to an integer identifier for
the bar; the next two columns have the IDs of the points in the
point matrix array that correspond to the endpoints of the
bar’s medial axis; and the fourth and fifth columns contain
the initial values of the bar’s size variable and its radius,
respectively.

It should be noted that this specification of points and bars
allows for two possibilities: bars can be “floating” or “con-
nected,” as detailed in Section 2.2. The computation of sensi-
tivities (cf. (25)) in the code accounts for both situations.

As noted in Section 2.4, for sensitivities of the projected
density of (2) to be well defined, it is necessary that r < r,.
Since we typically consider a sample window that at least
covers each finite element, as detailed in Section 3.9, this
requirement imposes a minimum element size. For example,
if rp,, = 1, and the sample window radius r is chosen to be
twice the size of the element radius r., then r, < 1/2 and
therefore the element size /4. should be at most V2 /2 in 2D
and /3 /2 in 3D. To avoid undefined sensitivities in the initial
design, it is also necessary that the length of each bar is not
zero, i.e., X1 # Xop. Therefore, the user should not create initial
designs with zero-length bars.

When running the optimization, the code saves the current
design (i.e., the arrays of points and bars) to a MATLAB .mat file.
If the flag GEOM.initial design.restart is set to true, the code
reads the initial design from this file. This is a useful feature to
start an optimization from the design obtained by another opti-
mization run or to perform a finite difference check of the
sensitivities (as detailed in Section 3.7) on the final design of
a run. We note, however, that this does not constitute a clean
continuation of a previous optimization run, since gradient-
based optimizers (certainly the ones used in this code) use
information from two or more consecutive iterations to con-
struct approximations of the optimization functions.

3.5 Optimization

Although the code in its current form is written to solve the
optimization problem of (15)—(20), it is also structured so that
() multiple constraints can be imposed and (b) any function
can be chosen as the objective. This is achieved by indicating
in the master input file the name of the objective function
(e.g., OPT.functions.objective = ‘compliance’;) and the
names and limits of the constraint functions (e.g.,
OPT.functions.constraints={‘volume fraction’, ‘my
constraint’}; and OPT.functions.constraint_limit = [0.3
1.0];). In this example, the user has to implement the function
named ‘my constraint’ and add it to the list of available func-
tions in the script init_optimization.m. This should facilitate
the modification of our code to address other optimization
problems.

@ Springer

As opposed to density-based topology optimization, the
magnitudes of the design variables in the geometry projection
scheme can differ greatly. Moreover, the optimization func-
tions can be highly nonlinear with respect to the design vari-
ables, and therefore the optimizer can take too large a design
step and produce poor iterates. To improve the performance of
the optimization, we thus impose move limits on the design
variables. In order to impose the same relative move limit on
all variables, we first scale the design variables as
Zi— é
i ==

Zj—g

, (32)

where 7Z; is the scaled variable i and Z;_ and Z; are lower and
upper bounds on the variables, respectively. For the compo-
nents of the medial axis endpoints x, and x,y,, these bounds
are given by the bounding box of the design region; for the bar
radius, they correspond to the values specified by the user in
GEOM.min_bar radius and GEOM.max_bar_radius; and the
size variables do not need any scaling. Variable scaling can be
turned on or off using the parameter OPT.options.dv_scaling
in the master input file. A move limit m is imposed on the
design variables at iteration / as

= U =
max (0,Z; -m|<z <min|(1,Z +m]|. (33)

The move limit value is assigned with the parameters
OPT.options.move limit in the master input file.

Two optimizers can be used with our code: MATLAB’s
fmincon and the method of moving asymptotes (MMA)
(Svanberg 1987, 2002, 2007). The choice of optimizer is
made with the parameter OPT.options.optimizer in the master
input file. In the case of fmincon, we employ the active-
set algorithm, since it allows us to impose move limits
(through the ‘RelLineSrchBnd’ option as a relative bound on
the line search step length), and it performs well in our numer-
ical experiments. fmincon handles well the situation where the
lower bounds on a variable equal the upper bounds, and there-
fore a fixed bar radius can be imposed if desired by setting
GEOM.min_bar radius = GEOM.max_bar radius.

In addition to scaling the design variables, it is important to
remember that in the case of MMA,, it is recommended that the
constraint limits and the objective function are between 1 and
100 for reasonable values of the design variables. The volume
fraction automatically satisfies this requirement, but the com-
pliance does not. If the magnitude of the applied loading is too
large and/or the elasticity modulus of the material is relatively
low, the compliance may easily exceed this range. The mini-
mum compliance design for a given volume fraction does not
depend on the magnitude of the load or the elastic modulus.
Therefore, the user can modify, for example, the load magni-
tude to make sure the compliance is within the recommended

A MATLAB code for topology optimization using the geometry projection method

range. Another, more general strategy is to simply scale the
compliance and its sensitivities by some factor, which requires
modifying the compute compliance.m script accordingly.
Ensuring proper scaling is important, as MMA may fail alto-
gether if the magnitude of the compliance is very large.

In the case of MMA, we provide the code to call it in the
script runmma.m, but the user must obtain the MATLAB ver-
sion of MMA from its author and copy the files mmasub.m,
subsolv.m, and kktcheck.m in the optimization folder of our
code. We employed the 2007 version of MMA (Svanberg
(2007)) for numerical tests with our code. Unlike fmincon,
MMA does not handle well the situation where the lower
and upper bounds of a variable are the same. Therefore, to
approximately impose a fixed bar radius, the user should set
GEOM.max_bar _radius=GEOM.min_bar_radius+delta,
where delta is a small positive number.

The code employs three stopping criteria. The first criterion
is satisfied if the 2-norm of the change in the vector of design
variables falls below a specified value, indicated by the pa-
rameter OPT.options.step tol. The second is satisfied if the
norm of the Karush-Kuhn-Tucker optimality conditions falls
below the value specified in the parameter
OPT.options.kkt tol. The third criterion is exceeding a maxi-
mum number of iterations, given by the parameter
OPT.options.max_iter. If any of these criteria are satisfied,
the optimization is stopped.

3.6 Output

The program produces several forms of output. During the
course of the optimization, two MATLAB figures are created
and updated at every iteration. The first is a plot of the bars
drawn by using directly the geometric parameters as rectan-
gles with semicircular ends and colored such that the transpar-
ency indicates the value of the size variable. A bar with a size
variable value of unity has no transparency, and bars with a
size variable value less than 0.05 are removed from the plot.

The second figure is a plot of the combined density of (5).
In the case that fmincon is used as optimizer, this figure has
two buttons to either pause or stop the optimization. At the end
of the optimization, a third figure is produced that plots the
iteration history of the objective and constraint functions. The
generation of these plots can be turned off by setting the var-
iable plot_cond to false in the master input file; this option is
convenient when, for example, the code is executed in a queue
in a high-performance computing system. The code also
writes information on the optimization iterations to
MATLAB’s Command Window.

Finally, our code writes Visualization Toolkit (.vtk) files of
the combined density of the design to the folder specified in
the OPT.options.vtk_output path parameter (which by default
is set to ‘output_files’). The user can request VTK output for
none, all, or the last iteration by setting the parameter

OPT.options.write_to_vtk to ‘none’, ‘all’, or ‘last’, respective-
ly. These files can be visualized with Open Source tools like
ParaView (Ahrens et al. 2005; Ayachit 2015), which offer
wide post-processing capabilities. This is particularly useful
for 3D problems.

3.7 Finite difference check

Another utility provided by our code is a forward finite differ-
ence check of the analytical sensitivities of the cost and/ or
objective functions. The finite difference check is turned on by
setting the parameter OPT.make fd check to ‘true’ in the
master input file. If this option is chosen, the code performs
the finite difference check and subsequently exits. The size of
the finite difference step is specified in the parameter
OPT.fd_step size. The user can choose what function should
be checked by setting the parameters check cost sens and
check cons_sens to ‘true’ or ‘false’. This functionality is use-
ful when developing new optimization functions to ensure the
accuracy of the analytical sensitivities.

3.8 Distance calculation

The computation of the distance d,. of (14) from the centroid
X, of each element e to the medial axis of each bar b requires,
conceptually, a double for loop, as shown in Fig. 3. This com-
putation, which is of order O(n¢ny), can be quite expensive;
however, it fortunately is embarrassingly parallel. In distribut-
ed memory implementations, the elements in the mesh can be
divided among the available compute cores and each core
calculates the distance from those elements to all of the bars
(see, e.g., Zhang et al. (2016a)). This computation scales lin-
early with number of cores, and therefore if enough cores are
employed for the distance computation (as well as the calcu-
lation of the combined density discussed in the following sec-
tion), eventually the finite element analysis dominates the cost
of each function evaluation as the number of elements in-
creases, and the geometry projection only represents a small
fraction of the cost.

When running on a single workstation with multiple cores,
MATLAB employs shared-memory processing for many of
its vectorized operations. Therefore, as discussed in
Andreassen et al. (2011), one of the keys to efficient
implementations of numerical methods in MATLAB is to
vectorize the computations as much as possible. In particular,
whenever a loop can be replaced with a vectorized operation,
the improvements in performance can be drastic.

In the case of the distance calculation, the strategy we used
to vectorize the double for loop is to employ three-
dimensional arrays, as can be seen in the excerpt of the dis-
tance computation script shown in Appendix A. For instance,
the array x_e 1b (line 36 in the code shown in the Appendix)
contains all the vectors x.y,, used in (12—14). The first

@ Springer

H. Smith, J. A. Norato

20
G &

Fig. 4 MBB beam problem

dimension of the array corresponds to the spatial components
in the vector (of size 2 and 3 in 2D and 3D problems, respec-
tively); the second dimension corresponds to the bar; and the
last to the element. Note that even the computation of the
branched function of 2 is vectorized by using Boolean matri-
ces of dimensions 1 x n;, X n, whose components equal true if
the condition for the corresponding branch is satisfied and
false otherwise (which are equivalent to 1 and 0, respectively).

As the problem size increases, accessing three-dimensional
matrices can get quite slow (particularly if they have to be
stored out of memory); therefore, eventually this approach
becomes inefficient. However, in our numerical experiments
(and using our hardware), we have been able to run problems
with meshes that have hundreds of thousands of elements and
tens of bars in reasonable times, and therefore this code should
in many cases be efficient enough for method development
(indeed, most publications with methods to perform topology
optimization with geometric components use mesh sizes well
within this range).

Another important aspect of the code that is not explicitly
stated in the pseudo-code of Fig. 3 is that the sensitivities of
each quantity are computed in the same script where the quan-
tity is computed, and they are then stored in the global struc-
tures or passed to the calling function so that the chain rule is
used for subsequent sensitivity calculations. For instance, the
derivatives of the distance dy, in the script of Fig. 19 with

initial design

10
s X X X)
X X X D
X X X)
0 ~ C— ~C— ~C— ~
Se L L L L L L L L L 1
0 2 4 6 8 10 12 14 16 18 20

Fig. 5 Initial design for MBB beam

@ Springer

design, iteration = 88

0 2 4 6 8 10 12 14 16 18 20
Fig. 6 Optimal design for MBB beam

o - N W A~ O

respect to the design parameters are computed in the same
script. This makes for a more modular code and makes it
easier to verify the correctness of the individual terms of the
sensitivities. As with the distance calculation, the computation
of the sensitivities makes extensive use of vectorization for
efficiency.

3.9 Combined density calculation

The computation of the combined density of (5) is also
vectorized for efficiency. By default, the radius 7, of the sam-
ple window in (2) is computed as the radius of the circle (in
2D) or sphere (in 3D) that circumscribes the square or cubic
element, respectively, with the same volume of the element:

r, = ﬁ(ve)ﬁ

; (34)

where d =2, 3 for 2D and 3D, respectively. This default can be
overridden by uncommenting the line with the parameter
OPT.parameters.elem_r in the master input file and assigning
to this parameter the actual value of the sample window radi-
us. In this case, the same radius will be used for all elements in
the mesh.

The code has two options for the penalization function z of
(4), implemented in the script penalize.m: the SIMP penaliza-
tion mentioned in Section 2.1 and the rational approximation
of material properties (RAMP) (Stolpe and Svanberg 2001).
The choice of penalization scheme is indicated by the param-
eter OPT.parameters.penalization_scheme in the master input
file, and the penalization parameter is assigned in
OPT.parameters.penalization param.

Several combination strategies are also available to com-
pute the smooth maximum max of (5), implemented in the
script smooth_max.m. These include the modified p-norm of

density, compliance = 4.201067

0 2 4 L] 8 10 12

Fig. 7 Combined density of optimal design for MBB beam

14 16 18 20

A MATLAB code for topology optimization using the geometry projection method

Fig. 8 Optimization history of

objective history
T T

compliance and volume fraction

T T T

‘
for MBB beam problem -]
10"]
| L —l1 1 |
0 10 20 30 40 50 60 70 80 90
iteration
constraint history
0.8 -
0.6 -
0.2
or Il Il Il Il Il Il Il Il 1
0 10 20 30 40 50 60 70 80 90

(6), a modified p-mean, and lower- and upper-bound
Kreisselmeier-Steinhauser approximations. The choice of
combination function is indicated in the parameter
OPT.parameters.smooth_max_scheme, and the aggregation
parameter (e.g., p in the p-norm) is assigned in the variable
OPT.parameters.smooth max_param. Once again, we have
made these functions modular so that the user can experiment
with different choices or implement their own.

4 Examples

In this section, we present several examples to demonstrate
some capabilities of the program. The purpose of these exam-
ples is not to demonstrate the geometry projection method but

100 F=0.1

100
Fig. 9 2D L-bracket problem

iteration

the functionality of the code. The input files for all the exam-
ples in this section are distributed with the code.

4.1 MBB beam

The first example corresponds to the widely studied
Messerschmitt-Bolkow-Blohm (MBB) beam. The dimen-
sions, displacement boundary conditions (BCs), and load for
the MBB problem are shown in Fig. 4. The magnitude of the
load is F'=0.1. The problem is symmetric with respect to the
centerline (only the right-hand side is shown in the figure).
The volume fraction constraint for this problem is v; = 0.45.

initial design

0 10 20 30 40 50 60 70 80 90 100
Fig. 10 Initial design for L-bracket

@ Springer

H. Smith, J. A. Norato

design, iteration = 64

100

0 10 20 30 40 50 60 70 80 90 100

Fig. 11 Optimal design for L-bracket

The reference manual that accompanies the code uses this
example as a tutorial. It provides step-by-step instructions to
copy the input files of the default 2D cantilever problem and
modify them to solve the MBB design problem.

For this problem, we employ a mesh of square elements of
side 0.1. Bounds on the bars’ radii are imposed to enforce a
fixed bar radius r, = 0.25. The optimization is performed
using MMA. The initial design is made of 32 “floating” bars,
shown in Fig. 5.

100 density, compliance = 2.846072

90
80
70
60

50

40

ENEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE:
=
Bl

30

20

0 10 20 30 40 50 60 70 80 90 100

Fig. 12 Combined density of optimal design for L-bracket

@ Springer

The optimal design, shown in Fig. 6, is obtained in 88
iterations and in 80 s using a Mac Pro with a 3.5 GHz 6-
Core Intel Xeon ES5, running macOS Catalina 10.15.1, and
MATLAB R2019b. The combined density of the optimal de-
sign is shown in Fig. 7. The transparency of the bars in this
figures indicates their size variable: a bar not shown (fully
transparent) has «y, = 0, while a bar with no transparency
has oy, = 1. The initial design for this and all examples uses
ag, = 0.5 for all bars, and so the bars appear half transparent.
The optimization history of the compliance (objective) and
volume fraction (constraint) is plotted in Fig. 8. All these
figures are produced by the code.

4.2 L-bracket

In this example, we minimize the compliance of the L-bracket
problem shown in Fig. 9 subject to a volume fraction con-
straint of v; = 0.3. The initial design for this example, shown
in Fig. 10, is made of 21 connected bars with 12 shared end-
points. Since connected bars share the endpoints, the connec-
tivity of the structure remains the same throughout the opti-
mization (although bars are removed by setting their size var-
iables to zero). Therefore, this is akin to ground structure ap-
proaches used in topology optimization with 1D elements.
Bounds on the bars’ radii of 2 < r, < 3 are imposed. MMA
is used as an optimizer.

Another feature of this example is that the mesh was creat-
ed with Gmsh and exported to MATLAB. The Gmsh .geo file
used to create the mesh is provided in the code. When the
mesh is exported to MATLAB, Gmsh creates a .m file with
a structure called msh with all the mesh information. GPTO
reads this file to populate the GEOM structure.

The optimal design and its corresponding combined den-
sity and the optimization history of the objective and con-
straint functions are shown in Figs. 11, 12, and 13, respec-
tively. It should be noted that due to the non-convex design
region in this example, it is possible that a bar lies partially
outside of the design region so that the bar is “broken” into
two parts. The work in Zhang et al. (2018) introduces a
constraint in the optimization to prevent solid geometric
components from exiting the design region. However, we
do not include this constraint in this work for the sake of
simplicity.

We also use this example to demonstrate another feature
of our code: we perform a finite difference check of the
compliance for the final design in the optimization. First,
to set the design for the finite difference check to the final
design of the optimization, the parameter
GEOM.initial design.restart must be set to true, and
GEOM.initial design.path must be set to the path and name
of the .mat file created by the code with the same name of
the initial design .m file (located in the same folder of the

A MATLAB code for topology optimization using the geometry projection method

Fig. 13 Optimization history of

objective history
T T

. . 102 ¢]
compliance and volume fraction o]
for L-bracket problem]

10'F E
| 1 — 1 1 E|
0 10 20 30 40 50 60 70
iteration
constraint history
04 r

01F

0 10

master input file). Second, the parameters
OPT.make fd check and OPT.check cost sens must be set
to true. The perturbation size for the finite difference check
is set as OPT.fd_step size=1e-6;.

The largest absolute and relative differences between the
analytical sensitivities and the finite difference sensitivities are
reported to MATLAB’s Command Window as —0.0037 and —
0.0013, respectively, indicating a good agreement. They cor-
respond to the x component of the eighth point, which is the
point closest to the right-hand side corner of the top edge. The
code also produces a plot comparing the two sensitivities,
shown in Fig. 14.

cost function

—c—fd
analytical

dc/dz
o

-6 I I I I I I |
0 10 20 30 40 50 60 70

Fig. 14 Finite difference check of the compliance sensitivities for the L-
bracket problem

20 30 40 50 60 70
iteration

4.3 3D cantilever beam

The last example corresponds to a 3D cantilever beam with
fixed supports on all four corners at one end, and a tip down-
ward load in the center of the opposite face, as shown in
Fig. 15. The magnitude of the force is /' = 0.1. We minimize
the compliance subject to a volume fraction constraint of
v;- = 0.1. The initial design for this example, shown in
Fig. 16, is made of 16 floating bars with 32 points. Bounds
on the bars’ radii of 0.5 < r, < 1.0 are imposed and MMA is
used as an optimizer.

The mesh for this problem is generated automatically, and
it consists of 80 x 40 x 40 = 128000 elements. This problem is
solved using GPUs on a machine with 24 Intel Xeon CPUs at
2.2 GHz, 32 Gb of RAM, and an NVIDIA Quadro M2000
GPU card; running on Ubuntu 18.04.3 LTS; and using
MATLAB R2019b.

The problem was solved in 63 min, and it took 106 itera-
tions to convergence. The optimal design for this problem is

10
IF
Tz

20 10

[

Fig. 15 Initial design for 3D cantilever beam

@ Springer

H. Smith, J. A. Norato

design, iteration =0

Fig. 16 Initial design for 3D cantilever beam

shown in Fig. 17. An isosurface plot of the combined density
for the optimal design (p = 0.5) produced using ParaView is
shown in Fig. 18. This figure is produced by opening the file
dens106.vtk file created by the code and saved to the
/output _files folder, subsequently applying the following fil-
ters in this order: Clean to Grid; Cell Data to Point Data; Clean
to Grid; Clip, changing the type to scalar and setting the value
to 0.5; Extract Surface; and Generate Surface Normal.

5 Conclusions

This paper presents a MATLAB code to perform topology
optimization of 2D and 3D structures made of cylindrical bars
by using geometry projection. The formulation of the method

design, iteration =0

20 0

Fig. 17 Optimal design for 3D cantilever beam

@ Springer

Fig. 18 Combined density isosurface for optimal design of 3D cantilever
beam

is presented in full along with implementation details to aid
users in understanding and using the code. The program is
written in a modular manner to facilitate modification and
experimentation. Vectorization is used extensively to render
an efficient code. The presented examples demonstrate some
of the most important features of the code. The program is
accompanied by a reference manual with a step-by-step tuto-
rial to reproduce the first example in this paper. The authors
hope this is a useful contribution to the community and wel-
come comments on this code.

Acknowledgments The authors express their gratitude to Prof. Krister
Svanberg for providing his MMA MATLAB optimizer to perform the
optimization.

Funding information The authors express their gratitude to the US Office
of Naval Research (Grant Number N00014-17-1-2505) for the support to
conduct this work.

Compliance with ethical standards

Conflict of interests statement
conflict of interest.

The authors declare that they have no

Replication of results All the results presented in this work can be
reproduced with the MATLAB code available from GitHub.

Appendix: code for distance calculation

Figure 19 shows the first part of the
compute bar elem distance.m script that computes the dis-
tance between the centroid of every element in the mesh to
the medial axis of each of the bars. The latter portion of the
code, which computes the derivatives of the distance with
respect to the medial axes endpoint x;, and x,, is omitted for
brevity.

A MATLAB code for topology optimization using the geometry projection method

function [dist,Ddist_Dbar_ends] = compute_bar_elem_distance()

This function computes an array dist of dimensions n_bar x n_elem with
the distance from the centroid of each element to each bar’s medial axis.

ST e

Ddist_Dbar_ends is a 3-dimensional array of dimensions n_bar_dofs x n_bar
% x n_elem that contains the sensitivities of the signed distances in dist
% with respect to each of the n__bar_dofs coordinates of the medial axis

% end points.

hh
global FE GEOM OPT

%% set parameters
tol = le-12; 7% tolerance on the length of a bar

n_elem = FE.n_elem;
dim = FE.dim;

n_bar = GEOM.n_bar;
n_bar_dofs = 2xdim;

% The following code is vectorized over the bars and the elements. We
% have to be consistent with the order of indices to perform element-

% wise array operations. The order of indices is (dim,bar,element)

points = GEOM.current_design.point_matrix(:,2:end).’;

x_1b = points(0PT.bar_dv(1:dim,:)); % (i,b)
x_2b = points(OPT.bar_dv(dim+1:2*dim,:)); % (i,b)
x_e = permute(FE.centroids ,[1,3,2]); % (i,1,e)

a_b = x_2b - x_1b; % Numerator of Eq. (11)

1_b = sqrt(sum(a_b."2, 1)); % length of the bars, Eq. (10)

1_b(1_b < tol) = 1; % To avoid division by zero

a_b = a_b./1_b; 7 normalize the bar direction to unit vector, Eq. (11)

x_e_1b = x_e - x_1b; % (i,b,e)
x_e_2b = x_e - x_2b; % (i,b,e)
norm_x_e_1b = sqrt(sum(x_e_1b.~2, 1)); % (1,b,e)
norm_x_e_2b = sqrt(sum(x_e_2b."2, 1)); % (1,b,e)

1_be = sum(x_e_1b.*a_b, 1); % (1,b,e), Eq. (12)
vec_r_be = x_e_1b - 1_be.*a_b; % (i,b,e)
r_be = sqrt(sum(vec_r_be."2, 1)); % (1,b,e), Eq. (13)

branchl = 1_be <= 0.0; % (1,b,e)
branch2 = 1_be > 1_b; % (1,b,e)
branch3 = ~(branchl | branch2); % (1,b,e)

% Compute the distances, Eq. (14)

dist_tmp = branchl.* norm_x_e_1b + ...
branch2.* norm_x_e_2b + ...
branch3.* r_be; % (1,b,e)

dist = permute(dist_tmp,[2,3,11); % (b,e)

Fig. 19 Excerpt of distance computation script (the portion with sensitivities calculation is omitted for brevity)

@ Springer

H. Smith, J. A. Norato

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article
are included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahrens J, Geveci B, Law C (2005) Paraview: an end-user tool for large
data visualization. The visualization handbook 717

Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O
(2011) Efficient topology optimization in matlab using 88 lines of
code. Struct Multidiscip Optim 43(1):1-16

Ayachit U (2015) The Paraview guide: a parallel visualization applica-
tion. Kitware, Inc.

Bell B, Norato J, Tortorelli D (2012) A geometry projection method for
continuum-based topology optimization of structures. In: 12th
AIAA Aviation Technology, Integration, and Operations (ATIO)
Conference and 14th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference

Bendsee MP, Sigmund O (1999) Material interpolation schemes in topol-
ogy optimization. Arch Appl Mech 69(9-10):635-654

Geuzaine C, Remacle JF (2009) Gmsh: a 3-d finite element mesh gener-
ator with built-in pre-and post-processing facilities. Int J] Numer
Methods Eng 79(11):1309-1331

Guo X, Zhang W, Zhong W (2014) Doing topology optimization explic-
itly and geometrically—a new moving morphable components
based framework. J Appl Mech 81(8)

Kazemi H, Vaziri A, Norato JA (2018) Topology optimization of struc-
tures made of discrete geometric components with different mate-
rials. J Mech Des 140(11):111,401

@ Springer

Norato J, Haber R, Tortorelli D, Bendsee MP (2004) A geometry projec-
tion method for shape optimization. Int J Numer Methods Eng
60(14):2289-2312

Norato J, Bell B, Tortorelli D (2015) A geometry projection method for
continuum-based topology optimization with discrete elements.
Comput Methods Appl Mech Eng 293:306-327

Norato JA (2018) Topology optimization with supershapes. Struct
Multidiscip Optim 58(2):415-434

Sigmund O, Maute K (2013) Topology optimization approaches. Struct
Multidiscip Optim 48(6):1031-1055

Stolpe M, Svanberg K (2001) An alternative interpolation scheme for
minimum compliance topology optimization. Struct Multidiscip
Optim 22(2):116-124

Svanberg K (1987) The method of moving asymptotes—a new method
for structural optimization. Int J Numer Methods Eng 24(2):359—
373

Svanberg K (2002) A class of globally convergent optimization methods
based on conservative convex separable approximations. SIAM J
Optim 12(2):555-573

Svanberg K (2007) MMA and GCMMA, versions september 2007.
Optim Syst Theory 104

Watts S, Tortorelli DA (2017) A geometric projection method for design-
ing three-dimensional open lattices with inverse homogenization. Int
J Numer Methods Eng 112(11):1564—1588

Wein F, Dunning P, Norato JA (2019) A review on feature-mapping
methods for structural optimization. arXiv 1910.10770

Zhang S, Norato JA, Gain AL, Lyu N (2016a) A geometry projection
method for the topology optimization of plate structures. Struct
Multidiscip Optim 54(5):1173—-1190

Zhang S, Gain AL, Norato JA (2018) A geometry projection method for
the topology optimization of curved plate structures with placement
bounds. Int J Numer Methods Eng 114(2):128-146

Zhang W, Yuan J, Zhang J, Guo X (2016b) A new topology optimization
approach based on moving morphable components (MMC) and the
ersatz material model. Struct Multidiscip Optim 53(6):1243—1260

Publisher’s note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	A MATLAB code for topology optimization using the geometry projection method
	Abstract
	Introduction
	Geometry projection formulation
	Projected, penalized, and combined densities
	Distance
	Optimization problem
	Sensitivities
	Algorithm

	Implementation
	Organization
	Inputs
	Finite element analysis
	Initial design
	Optimization
	Output
	Finite difference check
	Distance calculation
	Combined density calculation

	Examples
	MBB beam
	L-bracket
	3D cantilever beam

	Conclusions
	Appendix: code for distance calculation
	References

